Der Produktautomat

Definition

Es seien $M'=(\Sigma,Q',\delta',q_0',F')$ und $M''=(\Sigma,Q'',\delta'',q_0'',F'')$ zwei DFAs.

Wir definieren den *Produktautomaten* $M = M' \times M''$:

$$\begin{split} M &= (\Sigma, Q' \times Q'', \delta, (q_0', q_0''), F' \times F'') \\ \text{mit } \delta((q, p), a) &= (\delta'(q, a), \delta''(p, a)). \end{split}$$

Theorem

Wenn M' und M'' DFAs sind und $M = M' \times M''$, dann $L(M) = L(M') \cap L(M'')$.

Beweis.

$$\hat{\delta}((q_0', q_0''), w) = (\hat{\delta}'(q_0', w), \hat{\delta}''(q_0'', w))$$
(Induktion über $|w|$)
und damit

$$w \in L(M) \Leftrightarrow \hat{\delta}((q'_0, q''_0), w) \in F' \times F''$$

$$\Leftrightarrow (\hat{\delta}'(q'_0, w), \hat{\delta}''(q''_0, w)) \in F' \times F''$$

$$\Leftrightarrow \hat{\delta}'(q'_0, w) \in F' \text{ und } \hat{\delta}''(q''_0, w) \in F''$$

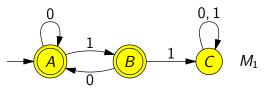
$$\Leftrightarrow w \in L(M') \text{ und } w \in L(M'').$$

Daher ist $L(M) = L(M') \cap L(M'')$.

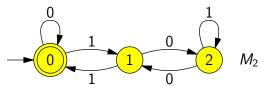
Beispiel

Konstruiere DFA für Sprache aller w mit:

1. Es kommt 11 nicht als Unterwort in w vor.



2. Als Binärzahl ist w durch drei teilbar.



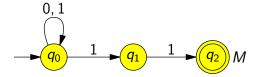
Konstruiere $M_1 \times M_2$!



Einige Vorteile endlicher deterministischer Automaten:

- durch Computer schnell simulierbar
- wenig Speicher benötigt: Tabelle für δ (read-only), aktueller Zustand
- ► Eingabe kann vergessen werden, nur von links nach rechts lesen
- Sie können schön visualisiert werden
- ► Sie können automatisch generiert werden (z.B. lex, egrep)

Nichtdeterministische endliche Automaten (NFAs)



Dies ist kein DFA!

- 1. Zwei Transitionen mit 1 aus q_0
- 2. Keine Transition mit 0 aus q_1

Welche Sprache soll *M* erkennen?

Nichtdeterministische endliche Automaten (NFAs)

Definition

Ein NFA ist ein 5-Tupel $M = (Q, \Sigma, \delta, q_0, F)$ mit

- ▶ Q Menge der Zustände
- Σ Eingabealphabet
- $\delta \colon Q \times \Sigma \to 2^Q$ Übergangsfunktion
- ▶ $q_0 \in Q$ Startzustand
- F ⊆ Q Endzustände

Definition

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein NFA.

$$\hat{\delta} \colon Q imes \Sigma^* o 2^Q$$
 definiert durch

- $\hat{\delta}(q,\epsilon) = \{q\}$
- $\hat{\delta}(q, wa) = \{p \mid \text{es gibt } r \in \hat{\delta}(q, w) \text{ und } p \in \delta(r, a)\}$

$$L(M) := \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

Beispiel

$$0, 1$$

$$q_0$$

$$1 \qquad q_1$$

$$\delta(q_0, 0) = \{q_0\}$$

$$\delta(q_0, 1) = \{q_0, q_1\}$$

$$\delta(q_0, 010110101101) = \{q_0, q_1\}$$

$$\delta(q_0, 11111) = \{q_0, q_1, q_2\}$$

$$L(M) = (0+1)*11$$

Der Potenzautomat

Definition

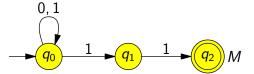
Sei M ein NFA, $M = (Q, \Sigma, \delta, q_0, F)$

Der zugehörige Potenzautomat M' ist so aufgebaut:

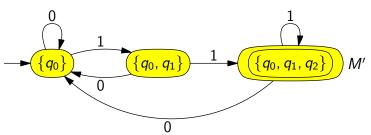
- $M' = (2^Q, \Sigma, \delta', \{q_0\}, F')$ mit
- $b': 2^Q \times \Sigma \to 2^Q, (S, a) \mapsto \bigcup_{q \in S} \delta(q, a)$
- $F' = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}$

Der Potenzautomat ist ein DFA!

Beispiel



Der Potenzautomat hat die Zustände \emptyset , $\{q_0\}$, $\{q_1\}$, $\{q_2\}$, $\{q_0, q_1\}$, $\{q_0, q_2\}$, $\{q_1, q_2\}$ und $\{q_0, q_1, q_2\}$ und sieht so aus:



Nichterreichbare Zustände weggelassen!

Theorem

Zu jedem NFA M gibt es einen DFA M' mit L(M) = L(M')

Beweis.

L(M) = L(M') für den Potenzautomaten M':

- $M = (Q, \Sigma, \delta, q_0, F)$
- $M' = (2^Q, \Sigma, \delta', \{q_0\}, F')$ mit
- $\delta': 2^Q \times \Sigma \to 2^Q, (S, a) \mapsto \bigcup_{g \in S} \delta(g, a)$
- $F' = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}$

Induktion über |w|: $\hat{\delta}'(\{q_0\}, w) = \hat{\delta}(q_0, w)$

Daher:

$$\hat{\delta}'(\{q_0\}, w) \in F' \iff \hat{\delta}(q_0, w) \cap F \neq \emptyset$$

Vergleich: DFA und NFA

Vorteile eines DFA:

Effizient simulierbar

Vorteile eines NFA:

- Oft kleiner als DFA
- ► Einfacher zu entwerfen
- Halbwegs effizient simulierbar

