Es sei L = 0*1*.

- > 001 ≡₁ 0111
- ▶ $010 \not\equiv_L 0111$, denn $010 \not\in L$, $0111 \in L$.
- ▶ $00 \not\equiv_L 00001$, denn $000 \in L$, $000010 \notin L$.

Wieviele Äquivalenzklassen hat \equiv_L ?

Drei:

- 1. 0*
- 2.0*1+
- 3. $0*1^+0(0+1)*$

Was ist der Index von \equiv_L für diese Sprachen?

- 1. $L = \{0, 1\}^*$
- 2. $L = \{ a^p \mid p \text{ ist eine Primzahl } \}$
- 3. $L = \emptyset$
- 4. $L = \{ w \in \{a, b, c\}^* \mid |w| \text{ ist Vielfaches von 7} \}$
- 5. $L = \{3, 3., 3.1, 3.14, 3.141, 3.1415, 3.14159, \ldots\}$
- 6. $L = \{ a^n b^n \mid n \ge 0 \}$
- 7. $L = \{ a^n b^m \mid n \ge m \ge 0 \}$
- 8. $L = \{ a^n b^m \mid |n m| < 5 \}$

Lemma (A)

$$L \subseteq \Sigma^*$$
 regulär $\implies \equiv_L$ hat endlichen Index.

Beweis.

- 1. L regulär und L = L(M) mit DFA $M = (Q, \Sigma, \delta, q_0, F)$.
- 2. Definiere $u \sim v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.
- 3. $u \sim v \Rightarrow u \equiv_L v$, denn $uw \in L \iff vw \in L$ falls $\hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.
- 4. Also hat \sim mindestens so viele Äquivalenzklassen wie \equiv_L .
- 5. \sim hat aber endlichen Index.

Lemma (B)

$$L \subseteq \Sigma^*$$
 regulär $\iff \equiv_L$ hat endlichen Index.

Beweis.

- 1. $L \subseteq \Sigma^*$ und Index von \equiv_L sei endlich.
- 2. Konstruiere $M = (Q, \Sigma, \delta, [\epsilon]_{\equiv_L}, F)$ mit
 - ▶ $Q = \{ [w]_{\equiv_{I}} \mid w \in \Sigma^{*} \}$

 - ► $F = \{ [w]_{\equiv_{I}} \mid w \in L \}$
- 3. Q endlich, da Index von \equiv_L endlich.
- 4. δ wohldefiniert, da $[u]_{\equiv_L} = [v]_{\equiv_L} \Rightarrow [ua]_{\equiv_L} = [va]_{\equiv_L}$
- 5. L(M) = L, da $\hat{\delta}([\epsilon]_{\equiv_L}, w) = [w]_{\equiv_L}$.

Es sei $L = 0^*1^*$.

 \equiv_I hat die Äquivalenzklassen

- 1. $[\epsilon]_{\equiv_I} = 0^*$,
- 2. $[1]_{\equiv_I} = 0*1^+$ und
- 3. $[10]_{\equiv_L} = 0*1^+0(0+1)*$.

Der Myhill-Nerode-Automat:

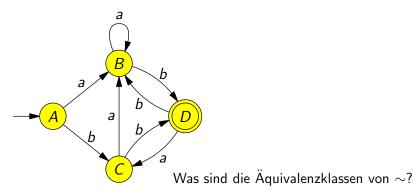
Der Satz von Myhill-Nerode

Theorem

- 1. $L \subseteq \Sigma^*$ ist genau dann regulär, wenn \equiv_L endlichen Index hat.
- 2. M ein DFA $\Longrightarrow \sim_M$ ist eine Verfeinerung von $\equiv_{L(M)}$.
- 3. Es gibt zu jeder regulären Sprache $L \in \Sigma^*$ einen bis auf Isomorphie eindeutigen DFA $M = (Q, \Sigma, \delta, q_0, F)$ mit L = L(M).

Beweis.

- 1. Folgt aus Lemma A und B.
- 2. Beweis von Lemma A: $u \sim v \Rightarrow u \equiv_L v$.
- 3. Da \sim eine Verfeinerung von \equiv_L ist, muß $\sim = \equiv_L$ gelten, wenn ihre Indexe gleich sind.



Natürlich $[\epsilon]_{\sim}$, $[a]_{\sim}$, $[b]_{\sim}$ und $[ab]_{\sim}$...

Was sind die Äquivalenzklassen von $\equiv_{L(M)}$?

Es sind $[\epsilon]_{\sim}$, $[a]_{\sim} \cup [b]_{\sim}$ und $[ab]_{\sim}$.

