Max flow min cut in undirected planar graphs

Kiril Mitev
Max flow min cut in undirected planar graphs

• Introduction and motivation

• Cuts and min cuts
 • Definitions
 • Algorithm
 • Reif's Algorithm
 • Complexity

• Flows
 • Cuts as upper bound
 • Feasible flows
 • St-planar graphs
 • Flows in general undirected graphs
 • From max flow to shortest path problem

• References
Applications

• Max flow and min cut: Two very rich algorithmic problems (cornerstone problems)

• Problems with reductions to flow/cut:
 • Network connectivity
 • Bipartite matching
 • Airline scheduling
 • Image processing
 • Distributed computing
 • Traffic control
 • Design of communication networks
 • Routing of VLSI circuits (very large scale integration)
 Integrating transistors into a circuit

Introduction and motivation → Applications
Cuts

- Edge set $\text{OUT}(E(A))$ separating G into two connected components $A, B \subseteq V, s \in A, t \in B$
- Each st path uses one of these edges
- Min st cut = min capacity

• Cuts and min cuts -> Definitions
Cuts

- Cuts and min cuts -> Definitions
Cuts

- Definitions
Min st cut

- Best known algorithm for planar graphs: $O(n \ast \log \log n)$
- Idea: use dual graph G^*, search for separating cycle
Min st cut

Separating cycle

- Dual of st cut is a cycle separating s and t

- Min st cut in G \(\iff\) min length separating cycle in \(G^\ast\)
Min st cut

Dual graph G^*
- Each face becomes a vertex

- Cuts and min cuts -> Dual graph
Min st cut

Dual graph G^*
- Each face becomes a vertex
Min st cut

Dual graph G*

- Each face becomes a vertex
- Dual e^* of e connects faces adjacent to e

Length $l(e^*) = c(e)$

- Cuts and min cuts -> Dual graph
Min st cut

Dual graph G^*

- One-to-one correspondence:
 - V and Φ, Φ: Faces of G^*
 - E and E^*
 - V^* and F, F: Faces of G
Min st cut - Algorithm

1. Let f, g be faces incident to s, t
Min st cut - Algorithm

1. Let f,g be faces incident to s,t
2. Compute SP P in G^* from f to g
Min st cut - Algorithm

1. Let \(f, g \) be faces incident to \(s, t \)
2. Compute SP \(P \) in \(G^* \) from \(f \) to \(g \)
3. Cut \(G^* \) open along \(P \)

- Cuts and min cuts -> Algorithm
Min st cut - Algorithm

1. Let f,g be faces incident to s,t
2. Compute SP P in G* from f to g
3. Cut G* open along P
4. Compute SP P_i for every pair of copies of nodes of P in resulting graph

- **Cuts and min cuts -> Algorithm**
Min st cut - Algorithm

1. Let f, g be faces incident to s, t
2. Compute SP P in G^* from f to g
3. Cut G^* open along P
4. Compute SP P_i for every pair of copies of nodes of P in resulting graph
5. Return $\min P_i$
Min st cut – Reif’s Algorithm

Reif [1983]

- Start with the middle vertex v of P
- Divide and Conquer
Min st cut – Reif’s Algorithm

Reif [1983]

• Start with the middle vertex v of P
• Divide and Conquer

• Total time: \(O(n \times \log n) \)
 • Recursion depth: \(O(\log n) \)
 • SP Algorithm for planar graphs: \(O(n) \) or \(O(n \times \log n) \)

- Cuts and min cuts -> Reif’s Algorithm
Min st cut - Complexity

- Min P_i = min separating cycle = min cut = max flow
- Complexity
 1. Time for computing SP P: $O(n)$
 2. Time for computing SP P_i:
 - 1983 Reif’s recursive algorithm – divide and conquer: $O(n \times \log n)$
 - 2005 MSSP – modified successive shortest path: $O(n \times \log n)$
 - Best known uses r-decompositions and FR-Dijkstra: $O(n \times \log \log n)$
 by Italiano, Nussbaum, Sankowski and Wulff Nilsen
Flows

- Single- and mulicommodity flows
- Best single-commodity algorithm for planar graphs: Sleator and Tarjan $O(n \times \log n)$

Input: Flow network $N = (G, P, c)$
- $G = (V, E)$
- P: set of source-sink pairs (s_i, p_i)
- c: capacity function

Output: An st flow of max value
Flows

Ford-Fulkerson Algorithm

1. Initialize zero flow
 Initialize residual graph G'
2. While (Augmenting path P in G')
 1. Determine bottleneck b of P
 2. Increase flow along P by b
 3. Update residual graph G'

- Flows -> Definition
Flows

• Max st flow uses (at most) all edges of s-t cut
• Max st flow bounded by min s-t cut
• 1956 Ford and Fulkerson proof equality
Feasible flows

• Respect capacities:
 \[f(e) \leq c(e) \quad \forall e \in E \]

• Satisfy the flow conservation rule:
 \[
 \sum_{e \in \delta^+} f(e) - \sum_{e \in \delta^-} f(e) = \begin{cases}
 -\nu, & i = s \\
 0, & i \neq s,t \\
 \nu, & i = t
 \end{cases}
 \]

• Can be tested in \(O(n^2 \cdot \log n) \)
st-planar graphs

• Graph is st-planar if s and t both lie on the outer (unbounded) face
• St-planar for s=1 and t=8
• Not st-planar for s=1 and t=6

flows -> St-planar graphs
st-planar graphs – Uppermost path

• Initialize
 • Start with zero flow
 \[\forall e \in E \; \text{set} \; f(e) = 0 \]
• Find the uppermost path
 if none exists then stop

- Flows -> St-planar graphs -> Algorithm
Initialize
- Start with zero flow
 \[\forall e \in E \ text{ set} \quad f(e) = 0 \]

Find the uppermost path
if none exists then stop

Let \(b = \min\{c(e) : e \in P\} \)

Increase the flow by \(b \) units along \(P \)

Decrease capacities

Delete edges of zero capacity

Flows -> St-planar graphs -> Algorithm
st-planar graphs - Algorithm

- Add edge (s, t) to E
st-planar graphs - Algorithm

- Add edge (s, t) to E
- Construct Dual G*
 - The new face is s*
 - The unbounded face is t*
 - No need for dual edge (s*, t*)

- Flows -> St-planar graphs -> Algorithm
st-planar graphs - Algorithm

- Add edge \((s, t)\) to \(E\)
- Construct Dual \(G^*\)
 - The new face is \(s^*\)
 - The unbounded face is \(t^*\)
 - No need for dual edge \((s^*, t^*)\)
- Length \(l(e^*) = c(e)\)
st-planar graphs - Algorithm

• Add edge (s, t) to E
• Construct Dual G*
 • The new face is s*
 • The unbounded face is t*
 • No need for dual edge (s*, t*)
• Length \(l(e^*) = c(e) \)
• An st cut in G corresponds to an s*t* path in G*
Thus, min cut can be computed by computing a shortest path in G^*.

Motivation for adding extra node s^* is to convert a cycle problem into a path problem.

The cut does not by itself give the max flow.

st-planar graphs - Algorithm

- Flows -> St-planar graphs -> Algorithm
st-planar graphs - Algorithm

• Thus, min cut can be computed by computing a shortest path in G*

• Motivation for adding extra node s* is to convert a cycle problem into a path problem

• The cut does not by itself give the max flow

• SP distances in G* can be used to obtain the max flow

Flows -> St-planar graphs -> Algorithm
st-planar graphs - Algorithm

• Compute SP Tree rooted at s*
st-planar graphs - Algorithm

- Compute SP Tree rooted at s^*
- Flow f on edge (i, j) is $f(i, j) = d(j^*) - d(i^*)$
Compute SP Tree rooted at s*

Flow f on edge (i, j) is
\[f(i, j) = d(j^*) - d(i^*) \]

SP distances are feasible flow function
- Satisfy capacity constraints
- Satisfy flow conservation

Flows -> St-planar graphs -> Algorithm -> SP
Feasible flows

- Cycle in G^* \iff cut in G
- Negative cycle in G^* \iff cut in G with negative residual capacities
- Flow is feasible \iff SP distances in G^* are well defined
 \iff SP distances respect capacities
 \iff No negative reduced lengths
 \iff G^* has no negative cycles

- \exists feasible flow of value λ \iff G^*_λ contains no negative cycles
- Break condition: negative cycle in the SP Tree
Idea for Max flow Algorithm

- Compute feasible st flow with fixed value λ by reduction to a SSSP problem in appropriately weighted dual graph G^*

- Zero flow is always feasible

- Start with $\lambda = 0$ and increase continuously

- Construct SP Tree for each value of λ
Max flow Algorithm

- Search for max λ between 0 and C
 - binary search $O(\log C)$
 - C is bound on the integer capacities
- Construct SP Tree for each value of λ: $O(n \cdot \log n)$
- Check for negative cycle and update λ accordingly
 - Negative cycle $\Rightarrow \lambda$ too high
 - No negative cycle $\Rightarrow \lambda$ too low
- Total time: $O(n \cdot \log n \cdot \log C)$
Max flow to parametric SP

Construct parametric SP Tree

- Maintain SP Tree G^*_λ as λ increases
 - distances induced by the costs $c(\lambda, e^*) = c(e) - \lambda \cdot \pi(e^*)$
- In each iteration one edge is replaced: $O(n)$ iterations
 - Choose edge with lowest slack
 - $O(n)$ iterations, each takes $O(\log n)$
- Total time: $O(n \times \log n)$

- Flows -> Flows in general undirected graphs -> Algorithm -> SP
Erickson’s Algorithm

PLANARMAXFLOW(G,c,s,t):
- Initialize the spanning tree L, predecessors, and slacks
- while s and t are in the same component of L
 - LP ← the path in L from s to t
 - p→q ← the edge in P* with minimum slack
 - \(\Delta \leftarrow \text{slack}(p\rightarrow q) \)
 - for every edge e in LP
 - \(\text{slack}(e^*) \leftarrow \text{slack}(e^*) - \Delta \)
 - \(\text{slack}(\text{rev}(e^*)) \leftarrow \text{slack}(\text{rev}(e^*)) + \Delta \)
 - delete \((p\rightarrow q)^*\) from L
 - if \(q \neq o \) (that is, if \(\text{pred}(q) \neq \emptyset \))
 - insert \((\text{pred}(q)\rightarrow q)^*\) into L
 - \(\text{pred}(q) \leftarrow p \)
- for each edge e
 - \(\phi(e) \leftarrow c(e) - \text{slack}(e^*) \)
- return \(\phi \)

- Flows -> Flows in general undirected graphs -> Algorithm -> SP
References

- Combinatorial Optimization: Theory and Algorithms
- Planar Graphs: Theory and Algorithms
- Combinatorial Optimization: Networks and Matroids
Thanks for listening!